

Blood 142 (2023) 1740-1741

The 65th ASH Annual Meeting Abstracts

POSTER ABSTRACTS

627.AGGRESSIVE LYMPHOMAS: CLINICAL AND EPIDEMIOLOGICAL

Improved Risk Prediction in DLBCL By Combining Clinical and PET Features with Interim PET Assessment

Christine Hanoun, MD¹, Martijn Heymans², Sanne Wiegers³, Annelies Bes⁴, Ulrich Duehrsen, MD⁵, Andreas Huettmann, MD¹, Lars Kurch, MD⁶, Sally F Barrington, MD⁷, George Mikhaeel, MD⁸, Pieternella Lugtenburg, MD PhD⁹, Luca Ceriani, MD¹⁰, Emanuele Zucca, MD^{11,12}, Tamas Gyorke, MD¹³, Sandor Czibor¹⁴, Gerben Zwezerijnen¹⁵, Ronald Boellaard¹⁶, Josée M. Zijlstra, MDPhD¹⁷, Corinne Eertink, Msc¹⁸

¹Hematology, Uniklinikum Essen, Essen, Germany

²Amsterdam UMC, Location Vumc, Amsterdam, NLD

³Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Hematology, Cancer Ce, Amsterdam, NLD

⁴Hematology, Amsterdam UMC, Amsterdam, Netherlands

⁵Universitatsklinikum Essen, Essen, DEU

⁶University Hospital Leipzig, Leipzig, DEU

⁷ School of Biomedical Engineering and Imaging Sciences, King's College London and Guy's and St Thomas' PET Centre, London, United Kingdom

⁸Guy's Cancer Centre, Guy's & St Thomas' NHS Trust and King's College University, London, United Kingdom

⁹Erasmus MC Univ. Med. Ctr. Rotterdam, Rotterdam, NLD

¹⁰Imaging Institute of Southern Switzerland (IIMSI), Lugano, Switzerland

¹¹IOSI-Oncology Inst. of Southern Switzerland, Lodrino, Switzerland

¹²Oncology Institute of Southern Switzerland, Bellinzona, Switzerland

¹³Semmelweis Egyetem, Budapest, Hungary

¹⁴Department of Nuclear Medicine, Medical Imaging Centre, Semmelweis University, B, Budapest, HUN

¹⁵Cancer Center Amsterdam, Amsterdam UMC Radiology and Nuclear Medicine, Amsterdam, Netherlands

¹⁶Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Radiology and Nuclear, Amsterdam, Netherlands

¹⁷ Cancer Center Amsterdam, Imaging, Amsterdam, Netherlands

¹⁸Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, Netherlands

Background: Accurate detection of patients at high risk of treatment failure following frontline immunochemotherapy in diffuse large B-cell lymphoma (DLBCL) is of paramount importance as these patients might benefit from early treatment escalation. Recently, we introduced the IMPI prognostic model based on metabolic tumor volume (MTV), age and stage that outperformed the international prognostic index (IPI). However, radiomic features such as Dmax _{bulk} and SUV _{peak} as well as an early treatment response at interim PET (i-PET) as a measure of chemosensitivity using Δ SUVmax may have additional predictive value. We tested different models for risk prediction aiming at a dynamic risk tool in the era of evolving radiomic features in functional imaging.

Methods: All patients within the PETRA database with newly diagnosed DLBCL, who were treated with R-CHOP and had available clinical data, baseline PET and i-PET scans were included.

The optimal transformation of Dmax _{bulk}, SUV _{peak} and Δ SUV _{max} was determined by choosing the best fitting Cox regression model with 3-year PFS as outcome, with highest R2 and lowest Akaike Information Criterion (AIC), while the cross-validated c-index was obtained as a measure for discrimination.

Subsequently, risk models were developed using clinical, baseline PET and i-PET data. The best risk model was compared to the IMPI model and our subsequent ClinicalPET model, also incorporating radiomic features (MTV, IPI, age, SUV _{peak} and D _{maxbulk}) by determination of risk re-classification rates and by generating kaplan-meier (KM)-curves based on 60-30-10 PFS risk groups.

Results: 1014 patients were included in the analyses. Adding i-PET reponse (Δ SUV _{max}) to the IMPI model markedly improved outcome prediction (AIC 3177.44, c-index 0.72) and was superior to IMPI model alone (AIC 3247.09, c-index 0.68). By adding D_{maxbulk} outcome prediction was further improved (AIC 3143.23, c-index 0.74), while SUV _{peak} did not show significant impact on outcome (p=0.07). Compared to the IMPI and the ClinicalPET model, the new model combining baseline features (MTV,

POSTER ABSTRACTS

age and D $_{maxbulk}$) with i-PET reponse (Δ SUV $_{max}$) led to a sharper segregation of KM-curves with an improved rate of correct progression risk classification (22%; 95% confidence interval 12.1-31.1%).

Conclusions: Adding i-PET reponse to baseline clinical and PET parameters optimizes risk classification in DLBCL enabling individualized risk assessment in early phase of frontline treatment and outperforms our previous IMPI model and ClinicalPET models.

Disclosures Zucca: AstraZeneca: Research Funding; BeiGene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene/BMS: Research Funding; BMS: Membership on an entity's Board of Directors or advisory committees; Curis: Membership on an entity's Board of Directors or advisory committees; Curis: Membership on an entity's Board of Directors or advisory committees; Curis: Membership on an entity's Board of Directors or advisory committees; Curis: Membership on an entity's Board of Directors or advisory committees; Incyte: Membership on an entity's Board of Directors or advisory committees, Research Funding; Ipsen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Merck: Membership on an entity's Board of Directors or advisory committees; Research Funding; Merck: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory co

https://doi.org/10.1182/blood-2023-190277